Antinuclear

Australian news, and some related international items

Nuclear enthusiasts strongly deny the strong evidence of harmful radiation

the cancers near the nuclear sites are caused by internal exposures, to Plutonium, Uranium, Tritium, internal-emitters
Strontium-90, Caesium-137, Iodine-131, Carbon-14, particles and huge amounts of radioactive noble gases Krypton-85 and Argon-41. There are more nasty isotopes but that will do.And internal exposures can deliver doses to the cell and to the DNA which are far above the small doses that the hormesis people are citing. They are talking about low external doses around external natural background, up to 10 mSv.

Thorium-snake-oilNuclear radiation, Kierkegaard, and the philosophy of denial, The Ecologist, Chris Busby 8th January 2016  As the evidence of the extreme harm to health inflicted by nuclear radiation mounts, the denialists are resorting to ever greater extremes, writes Chris Busby. On the one hand, advancing the absurd claim that ionising radition is not merely harmless, but health-enhancing. On the other, closing down the experiment that would have provided the strongest evidence yet………

I want to apply the philosopher Soren Kierkegaard’s approach to something that Science can explain and has: the health effects of ionising radiation.

Kierkegaard said of belief that it becomes stronger the more impossible and threatened it is. And this seems to be rapidly coming true in the case of nuclear energy. The torture imposed on logic, reason and observational data by the advocates of nuclear power has now reached the level of clinical psychosis.

A psychosis is a thought disorder in which reality testing is grossly impaired. There is so much evidence that nuclear power kills, causes cancer, mutates populations, reduces fertility and kills babies that only a mad person would continue with the belief that it is a good thing and should be pursued no matter what the cost in money and death.

And as they move to even greater levels of psychotic delusion they present two new survival strategies which make it brilliantly clear that the proponents of nuclear are off their heads.

First the recent move to petition the US nuclear regulators to accept the idea that small amounts of radiation are actually good for you (Yes!); we should all be forced to be irradiated like food, maybe at birth in the equivalent of a mass vaccination. In you go, Jimmy: BZZZZZ, there you are, that didn’t hurt did it?

And the second, as I wrote about recently, is to cancel the US nation-wide study of cancer near nuclear plants.

Are these two moves related? You bet! If the National Academy of Sciences Cancer Study found that people are dying because of the ‘low doses’ received from the emissions, then obviously low doses of radiation can’t be good for you. We are back to the Dark Ages.

Hormesis, or ‘radiation is good for you’

I am regularly asked to comment on Hormesis, the idea that small amounts of radiation are good for you.

Several animal experiments seem to have shown that if you deliver a low dose of radiation and then later follow it up with a big dose, those groups that are primed with the low dose have a resistance to developing cancer from the big dose compared with controls which have not.

The explanation is that cells adjust their DNA repair levels, the concentrations of cellular anti-oxidants and radiation repair systems is altered in proportion to the perceived radiation stress. I accept that this is the case, and indeed it seems intuitively likely that such a system would have developed.

We protect against ultraviolet damage to skin cells by sun-tanning, and we have haemoglobin modulators that can be induced by low oxygen levels at altitude. For radiation the process is termed hormesis and is entirely dependent on the induction of cell repair.

But there is clearly a limit to this process: above a certain dose it is overwhelmed: the cell just can’t mobilise enough defences and the castle is taken; by which I mean the DNA is mutated and off we go.

The alternative position, the probabilistic one, which is where we are now with radiation protection models, NCRP, ICRP all those people, is that radiation creates its effects by causing tracks of charged particles, mostly electrons.

Every ionization causes damage to the cell, and therefore even at the smallest dose, one ionisation, there is damage to the cell and hence a finite probability that this will lead to cancer. These are the armies facing each other in the petition to assume a threshold, based on the hormesis model versus the Linear No Threshold model.

Actually, as far as human cancer and genetic damage is concerned, both are wrong. I met the hormesis brigade, Myron Pollycove and Ludwig Feinendegen at the CERRIE conference in Oxford in 2004. They were quite sympathetic with what I was arguing (maybe they hadn’t thought it through), but they both seemed like nice guys. Scientists anyway. Not psychotic. Because their arguments were based on observation.

Sadly, it’s not true

So what is wrong with hormesis. Is radiation good for you? The answer, of course, is no it isn’t. There are two alternative, not mutually exclusive reasons. The first is due to Elena Burlakova, Head of Radiation Biology at the Russian Academy of Sciences. Her groups have carried out dozens of experiments on the effects of radiation on different systems.

The dose response they find is biphasic. I show this in Figure 1 (above right). The effects (including a plot she made for childhood leukemia near nuclear sites) go up then down then up again.

She ascribes this to a combination of the basic dose response which is like a hogs back, going up then flattening, and the induction of repair systems ( the hormesis effect) resulting in a falling of the response, which is then overwhelmed at some point, at which the response rises. So the largest effect is at very low doses indeed.

The second is my idea and it is very simple [1]. In the body there are many differentiated types of cell, but what they all (except a few which do not replicate and which you are stuck with all your life, heart muscle, brain) have in common is that at any single time there are two classes: those that are functioning, and those that, because of age (and DNA damage) or fresh DNA damage, make the decision to replicate and provide a daughter cell to take over the job that the parent can no longer do properly.

Replication begins with a 12 hour period in which the cell checks the DNA strands against one another, repairs any repairable mistakes (mis-matches) and then divides. This period is known from experiments to be extraordinarily sensitive to radiation damage to the DNA, ten to hundreds of times more sensitive.

So as the dose to the cell and specifically the DNA is increased, mutation increases for these sensitive minority sub-class of cells which are in repair-replication phase. Thus the cancer rates (or whatever genetic end point is used) rises sharply at these very low doses, Region A in Figure 1 (above right).

But then the dose reaches the point where these cells are so damaged they cannot survive. At this point, the cancer effect falls (a dead cell doesn’t represent a cancer hazard, it cannot create a genetically damaged clone).

This reduction appears to the hormesis crew as a good thing, but note it doesn’t operate from the lowest dose, only from some intermediate low dose, and this position (the top of the A peak in Figure 1) is different for different cells.

As the dose increases, after all the sensitive replicating cells are wiped out, the insensitive cells begin to be affected (region B) and the cancer excess risk rises again until these also are overwhelmed and you die (region C). The effect is clearly seen in the results of the huge Cardis et al. 15-country nuclear workers study data which is presented at different doses……….

………the cancers near the nuclear sites are caused by internal exposures, to Plutonium, Uranium, Tritium, Strontium-90, Caesium-137, Iodine-131, Carbon-14, particles and huge amounts of radioactive noble gases Krypton-85 and Argon-41. There are more nasty isotopes but that will do.And internal exposures can deliver doses to the cell and to the DNA which are far above the small doses that the hormesis people are citing. They are talking about low external doses around external natural background, up to 10 mSv.

The alpha particle track in a cell delivers about 400mSv. The alpha decay of a Uranium atom bound to DNA delivers several thousand mSv to the DNA, and also amplifies natural background though secondary photoelectron effects. Different game altogether.

So whats the conclusion? It is this: there is no threshold from zero dose. There is an apparent reduction in the response over some variable intermediate low dose region (the right hand side of the A region peak in Fig 1) which varies depending on the cell type.

Since we don’t know what this is, and anyway it varies, we cannot allow for the effect in legislation. And of course, we don’t know what other downsides there are to induced repair: one clear likelihood is that you die earlier.

You only get a limited number of replications before you run out of the ability to replace cells. If you use them up with induced repair systems that’s the end of the road. Otherwise why haven’t we all got these repair systems zinging and spinning at maximum rpm all the time? We all die. And that is why…….http://www.theecologist.org/essays/2986384/nuclear_radiation_kierkegaard_and_the_philosophy_of_denial.html

 

January 8, 2016 - Posted by | Uncategorized

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: