Antinuclear

Australian news, and some related international items

Exposing the false claims about Generation IV nuclear reactors

Generation IV reactors that consume waste instead of producing waste and couldn’t be used for weapons production … sounds pretty good but the claims are fanciful. A recent article in the Bulletin of the Atomic Scientists ‒ co-authored by a former chair of the US Nuclear Regulatory Commission ‒ states that “molten salt reactors and sodium-cooled fast reactors – due to the unusual chemical compositions of their fuels – will actually exacerbate spent fuel storage and disposal issues.” It also raises proliferation concerns about ‘integral fast reactor’ and MSR technology: “Pyroprocessing and fluoride volatility-reductive extraction systems optimized for spent fuel treatment can – through minor changes to the chemical conditions – also extract plutonium (or uranium 233 bred from thorium).”

Here’s a summary:

Generation IV nuclear waste claims debunked

Lindsay Krall and Allison Macfarlane have written an important article in the Bulletin of the Atomic Scientists debunking claims that certain Generation IV reactor concepts promise major advantages with respect to nuclear waste management. Krall is a post-doctoral fellow at the George Washington University. Macfarlane is a professor at the same university, a former chair of the US Nuclear Regulatory Commission from July 2012 to December 2014, and a member of the Blue Ribbon Commission on America’s Nuclear Future from 2010 to 2012.

Krall and Macfarlane focus on molten salt reactors and sodium-cooled fast reactors, and draw on the experiences of the US Experimental Breeder Reactor II and the US Molten Salt Reactor Experiment.

The article abstract notes that Generation IV developers and advocates “are receiving substantial funding on the pretense that extraordinary waste management benefits can be reaped through adoption of these technologies” yet “molten salt reactors and sodium-cooled fast reactors – due to the unusual chemical compositions of their fuels – will actually exacerbate spent fuel storage and disposal issues.”

Here is the concluding section of the article:

“The core propositions of non-traditional reactor proponents – improved economics, proliferation resistance, safety margins, and waste management – should be re-evaluated. The metrics used to support the waste management claims – i.e. reduced actinide mass and total radiotoxicity beyond 300 years – are insufficient to critically assess the short- and long-term safety, economics, and proliferation resistance of the proposed fuel cycles.

“Furthermore, the promised (albeit irrelevant) actinide reductions are only attainable given exceptional technological requirements, including commercial-scale spent fuel treatment, reprocessing, and conditioning facilities. These will create low- and intermediate-level waste streams destined for geologic disposal, in addition to the intrinsic high-level fission product waste that will also require conditioning and disposal.

“Before construction of non-traditional reactors begins, the economic implications of the back end of these non-traditional fuel cycles must be analyzed in detail; disposal costs may be unpalatable. The reprocessing/treatment and conditioning of the spent fuel will entail costs, as will storage and transportation of the chemically reactive fuels. These are in addition to the cost of managing high-activity operational wastes, e.g. those originating from molten salt reactor filter systems. Finally, decommissioning the reactors and processing their chemically reactive coolants represents a substantial undertaking and another source of non-traditional waste. …

“Issues of spent fuel management (beyond temporary storage in cooling pools, aka “wet storage”) fall outside the scope of the NRC’s reactor design certification process, which is regularly denounced by nuclear advocates as narrowly applicable to light water reactor technology and insufficiently responsive to new reactor designs. Nevertheless, new reactor licensing is contingent on broader policies, including the Nuclear Waste Policy Act and the Continued Storage Rule. Those policies are based on the results of radionuclide dispersion models described in environmental impact statements. But the fuel and barrier degradation mechanisms tested in these models were specific to oxide-based spent fuels, which are inert, compared to the compounds that non-traditional reactors will discharge.

“The Continued Storage Rule explicitly excludes most non-oxide fuels, including those from sodium-cooled fast reactors, from the environmental impact statement. Clearly, storage and disposal of non-oxide commercial fuels should require updated assessments and adjudication.

“Finally, treatment of spent fuels from non-traditional reactors, which by Energy Department precedent is only feasible through their respective (re)processing technologies, raises concerns over proliferation and fissile material diversion. Pyroprocessing and fluoride volatility-reductive extraction systems optimized for spent fuel treatment can – through minor changes to the chemical conditions – also extract plutonium (or uranium 233 bred from thorium). Separation from lethal fission products would eliminate the radiological barriers protecting the fuel from intruders seeking to obtain and purify fissile material. Accordingly, cost and risk assessments of predisposal spent fuel treatments must also account for proliferation safeguards.

“Radioactive waste cannot be “burned”; fission of actinides, the source of nuclear heat, inevitably generates fission products. Since some of these will be radiotoxic for thousands of years, these high-level wastes should be disposed of in stable waste forms and geologic repositories. But the waste estimates propagated by nuclear advocates account only for the bare mass of fission products, rather than that of the conditioned waste form and associated repository requirements.

“These estimates further assume that the efficiency of actinide fission will surge, but this actually relies on several rounds of recycling using immature reprocessing technologies. The low- and intermediate-level wastes that will be generated by these activities will also be destined for geologic disposal but have been neglected in the waste estimates. More important, reprocessing remains a security liability of dubious economic benefit, so the apparent need to adopt these technologies simply to prepare non-traditional spent fuels for storage and disposal is a major disadvantage relative to light water reactors. Theoretical burnups for fast and molten salt reactors are too low to justify the inflated back-end costs and risks, the latter of which may include a commercial path to proliferation.

“Reductions in spent fuel volume, longevity, and total radiotoxicity may be realized by breeding and burning fissile material in non-traditional reactors. But those relatively small reductions are of little value in repository planning, so utilization of these metrics is misleading to policy-makers and the general public. We urge policy-makers to critically assess non-traditional fuel cycles, including the feasibility of managing their unusual waste streams, any loopholes that could commit the American public to financing quasi-reprocessing operations, and the motivation to rapidly deploy these technologies. If decarbonization of the economy by 2050 is the end-goal, a more pragmatic path to success involves improvements to light water reactor technologies, adoption of Blue Ribbon Commission recommendations on spent fuel management, and strong incentives for commercially mature, carbon-free energy technologies.”

Lindsay Krall and Allison Macfarlane, 2018, ‘Burning waste or playing with fire? Waste management considerations for non-traditional reactors’, Bulletin of the Atomic Scientists, 74:5, pp.326-334, https://tandfonline.com/doi/10.1080/00963402.2018.1507791

Advertisements

October 6, 2018 - Posted by | General News

1 Comment »

  1. Reblogged this on AGR Daily 60 Second News Bites.

    Comment by A Green Road Daily News | October 6, 2018 | Reply


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: